Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.588
Filtrar
1.
J Comput Neurosci ; 52(2): 125-131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470534

RESUMO

Long-term potentiation (LTP) is a synaptic mechanism involved in learning and memory. Experiments have shown that dendritic sodium spikes (Na-dSpikes) are required for LTP in the distal apical dendrites of CA1 pyramidal cells. On the other hand, LTP in perisomatic dendrites can be induced by synaptic input patterns that can be both subthreshold and suprathreshold for Na-dSpikes. It is unclear whether these results can be explained by one unifying plasticity mechanism. Here, we show in biophysically and morphologically realistic compartmental models of the CA1 pyramidal cell that these forms of LTP can be fully accounted for by a simple plasticity rule. We call it the voltage-based Event-Timing-Dependent Plasticity (ETDP) rule. The presynaptic event is the presynaptic spike or release of glutamate. The postsynaptic event is the local depolarization that exceeds a certain plasticity threshold. Our model reproduced the experimentally observed LTP in a variety of protocols, including local pharmacological inhibition of dendritic spikes by tetrodotoxin (TTX). In summary, we have provided a validation of the voltage-based ETDP, suggesting that this simple plasticity rule can be used to model even complex spatiotemporal patterns of long-term synaptic plasticity in neuronal dendrites.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal , Dendritos , Potenciação de Longa Duração , Modelos Neurológicos , Células Piramidais , Dendritos/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologia , Tetrodotoxina/farmacologia , Simulação por Computador
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338757

RESUMO

Tetrodotoxin (TTX) is a neurotoxic molecule used by many animals for defense and/or predation, as well as an important biomedical tool. Its ubiquity as a defensive agent has led to repeated independent evolution of tetrodotoxin resistance in animals. TTX binds to voltage-gated sodium channels (VGSC) consisting of α and ß subunits. Virtually all studies investigating the mechanisms behind TTX resistance have focused on the α subunit of voltage-gated sodium channels, where tetrodotoxin binds. However, the possibility of ß subunits also contributing to tetrodotoxin resistance was never explored, though these subunits act in concert. In this study, we present preliminary evidence suggesting a potential role of ß subunits in the evolution of TTX resistance. We gathered mRNA sequences for all ß subunit types found in vertebrates across 12 species (three TTX-resistant and nine TTX-sensitive) and tested for signatures of positive selection with a maximum likelihood approach. Our results revealed several sites experiencing positive selection in TTX-resistant taxa, though none were exclusive to those species in subunit ß1, which forms a complex with the main physiological target of TTX (VGSC Nav1.4). While experimental data validating these findings would be necessary, this work suggests that deeper investigation into ß subunits as potential players in tetrodotoxin resistance may be worthwhile.


Assuntos
Canais de Sódio Disparados por Voltagem , Animais , Tetrodotoxina/farmacologia , Funções Verossimilhança , Canais de Sódio Disparados por Voltagem/genética , Bloqueadores dos Canais de Sódio/farmacologia
3.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G187-G194, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38111974

RESUMO

Adiponectin (ADPN) has been reported to induce inhibitory effects on gastric motor activity, which, being a source of peripheral satiety signals, would contribute to the central anorexigenic effects of the hormone in rodents. However, peripheral satiety signals can also originate from the small intestine. Since there are no data on the effects of ADPN in this gut region, the present study aimed to investigate whether ADPN affects murine ileal contractility. Immunofluorescence experiments and Western blot were also performed to reveal the expression of ADPN receptors. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Preparations showed a tetrodotoxin- and atropine-insensitive spontaneous contractile activity. Electrical field stimulation (EFS) induced tetrodotoxin- and atropine-sensitive contractile responses. ADPN induced a decay of the basal tension and decreased the amplitude of either the spontaneous contractility or the EFS-induced excitatory responses. All ADPN effects were abolished by the nitric oxide (NO) synthesis inhibitor NG-nitro l-arginine. The expression of the ADPN receptor, AdipoR1, but not AdipoR2, was also revealed in enteric glial cells. The present results offer the first evidence that ADPN acts on ileal preparations. The hormone exerts inhibitory effects, likely involving AdipoR1 on enteric glial cells and NO. From a physiological point of view, it could be hypothesized that the depressant action of ADPN on ileal contractility represents an additional peripheral satiety signal which, as also described for the ileal brake, could contribute to the central anorexigenic effects of the hormone.NEW & NOTEWORTHY This study provides the first evidence that adiponectin (ADPN) is able to act on ileal preparations. Functional results demonstrate that the hormone, other than causing a slight decay of the basal tension, depresses the amplitude of both spontaneous contractility and neurally induced excitatory responses of the mouse ileum through the involvement of nitric oxide. The expression of the ADPN receptor AdipoR1 and its localization on glial cells was revealed by Western blot and immunofluorescence analysis.


Assuntos
Adiponectina , Óxido Nítrico , Animais , Camundongos , Adiponectina/farmacologia , Atropina/farmacologia , Íleo/metabolismo , Contração Muscular/fisiologia , Óxido Nítrico/metabolismo , Tetrodotoxina/farmacologia
4.
Pak J Biol Sci ; 26(8): 419-426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37937335

RESUMO

<b>Background and Objective:</b> Functional Voltage-Gated Sodium Channels (VGSCs) are expressed in metastatic prostate cancer (PCa) cells. A number of <i>in vitro</i> studies have evaluated the effect of functional VGSC expression on the metastatic cell behavior of PCa cells. This study aimed to evaluate the effect of VGSC inhibition on metastatic cell behavior in PCa cells by meta-analysis. <b>Materials and Methods:</b> Meta-analysis was performed on data taken from 13 publications that examined the effect of VGSC inhibitors on the metastatic cell behavior of metastatic PCa cells expressing functional VGSCs. The measure of effect was calculated according to the random effects model using mean differences and presented with a forest plot graph. Heterogeneity was checked using the Cochran's Q Test (Chi-square statistic) and the I<sup>2</sup> test statistic. In order to evaluate the objectivity, the funnels-plot graph was used. <b>Results:</b> The g value showing the effect size was calculated as 4.49 (95% CI = 5.35-3.62) in the experiments where Tetrodotoxin (TTX) was used, which has a very high specificity for VGSCs but is not licensed for clinical use. In experiments using licensed inhibitors Lamotrigine, Oxcarbazepine, Phenytoin, Ranolazine, Riluzole and Lidocaine, the g value was 1.37 (95 % CI = 2.02-0.71). Suppression of metastatic cell behavior in both subgroups is statistically significant (p<0.00001). <b>Conclusion:</b> Meta-analysis confirmed that VGSCs are an enhancing factor in the metastasis of PCa cells. The VGSCs appear to be an important target in the diagnosis and development of new treatment options in PCa.


Assuntos
Neoplasias da Próstata , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ranolazina/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
5.
Eur J Pharmacol ; 961: 176218, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992887

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve various symptoms such as headache, arthralgia, and dental pain. While the primary mechanism of NSAID-based pain relief is the inhibition of cyclooxygenase-2, several NSAIDs also modulate other molecular targets related to nociceptive transmission such as voltage-gated Na+ channels. In the present study, we examined the effects of NSAIDs on persistent Na+ current (INaP) mediated by tetrodotoxin-resistant (TTX-R) Na+ channels in small-to medium-sized trigeminal ganglion neurons using a whole-cell patch-clamp technique. At clinically relevant concentrations, all propionic acid derivatives tested (ibuprofen, naproxen, fenoprofen, and flurbiprofen) preferentially inhibited the TTX-R INaP. The inhibition was more potent at acidic extracellular pH (pH 6.5) than at normal pH (pH 7.4). Other NSAIDs, such as ketorolac, piroxicam, and aspirin, had a negligible effect on the TTX-R INaP. Ibuprofen both accelerated the onset of inactivation and retarded the recovery from inactivation of TTX-R Na+ channels at acidic extracellular pH. However, all NSAIDs tested in this study had minor effects on voltage-gated K+ currents, as well as hyperpolarization-activated and cyclic nucleotide-gated cation currents, at both acidic and normal extracellular pH. Under current-clamp conditions, ibuprofen decreased the number of action potentials elicited by depolarizing current stimuli at acidic (pH 6.5) extracellular pH. Considering that extracellular pH falls as low as 5.5 in inflamed tissues, TTX-R INaP inhibition could be a mechanism by which ibuprofen and propionic acid derivative NSAIDs modulate inflammatory pain.


Assuntos
Ibuprofeno , Gânglio Trigeminal , Ratos , Animais , Tetrodotoxina/farmacologia , Ibuprofeno/farmacologia , Canais de Sódio , Bloqueadores dos Canais de Sódio/farmacologia , Ratos Sprague-Dawley , Potenciais da Membrana , Anti-Inflamatórios não Esteroides/farmacologia , Neurônios , Dor , Ácidos , Concentração de Íons de Hidrogênio
6.
Mar Drugs ; 21(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999412

RESUMO

Tetrodotoxin (TTX) is an exceedingly toxic non-protein biotoxin that demonstrates remarkable selectivity and affinity for sodium channels on the excitation membrane of nerves. This property allows TTX to effectively obstruct nerve conduction, resulting in nerve paralysis and fatality. Although the mechanistic aspects of its toxicity are well understood, there is a dearth of literature addressing alterations in the neural microenvironment subsequent to TTX poisoning. In this research endeavor, we harnessed human pluripotent induced stem cells to generate cerebral organoids-an innovative model closely mirroring the structural and functional intricacies of the human brain. This model was employed to scrutinize the comprehensive transcriptomic shifts induced by TTX exposure, thereby delving into the neurotoxic properties of TTX and its potential underlying mechanisms. Our findings revealed 455 differentially expressed mRNAs (DEmRNAs), 212 differentially expressed lncRNAs (DElncRNAs), and 18 differentially expressed miRNAs (DEmiRNAs) in the TTX-exposed group when juxtaposed with the control cohort. Through meticulous Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis, we ascertained that these differential genes predominantly participate in the regulation of voltage-gated channels and synaptic homeostasis. A comprehensive ceRNA network analysis unveiled that DEmRNAs exert control over the expression of ion channels and neurocytokines, suggesting their potential role in mediating apoptosis.


Assuntos
MicroRNAs , Síndromes Neurotóxicas , Humanos , Tetrodotoxina/farmacologia , Transcriptoma , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Canais de Sódio/genética , Canais de Sódio/metabolismo , Síndromes Neurotóxicas/genética , Redes Reguladoras de Genes
7.
Stem Cell Reports ; 18(11): 2222-2239, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37863044

RESUMO

Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Plasticidade Neuronal , Humanos , Ratos , Animais , Células Cultivadas , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Técnicas de Cocultura , Tetrodotoxina/farmacologia
8.
Pflugers Arch ; 475(11): 1301-1314, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707585

RESUMO

Aconitine is a sodium channel opener, but its effects on the respiratory center are not well understood. We investigated the dose-dependent effects of aconitine on central respiratory activity in brainstem-spinal cord preparations isolated from newborn rats. Bath application of 0.5-5 µM aconitine caused an increase in respiratory rhythm and decrease in the inspiratory burst amplitude of the fourth cervical ventral root (C4). Separate application of aconitine revealed that medullary neurons were responsible for the respiratory rhythm increase, and neurons in both the medulla and spinal cord were involved in the decrease of C4 amplitude by aconitine. A local anesthetic, lidocaine (100 µM), or a voltage-dependent sodium channel blocker, tetrodotoxin (0.1 µM), partially antagonized the C4 amplitude decrease by aconitine. Tetrodotoxin treatment tentatively decreased the respiratory rhythm, but lidocaine tended to further increase the rhythm. Treatment with 100 µM riluzole or 100 µM flufenamic acid, which are known to inhibit respiratory pacemaker activity, did not reduce the respiratory rhythm enhanced by aconitine + lidocaine. The application of 1 µM aconitine depolarized the preinspiratory, expiratory, and inspiratory motor neurons. The facilitated burst rhythm of inspiratory neurons after aconitine disappeared in a low Ca2+/high Mg2+ synaptic blockade solution. We showed the dose-dependent effects of aconitine on respiratory activity. The antagonists reversed the depressive effects of aconitine in different manners, possibly due to their actions on different sites of sodium channels. The burst-generating pacemaker properties of neurons may not be involved in the generation of the facilitated rhythm after aconitine treatment.


Assuntos
Aconitina , Tronco Encefálico , Animais , Ratos , Animais Recém-Nascidos , Aconitina/farmacologia , Tetrodotoxina/farmacologia , Ratos Wistar , Bulbo/fisiologia , Medula Espinal , Lidocaína/farmacologia
9.
J Neurophysiol ; 130(3): 684-693, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584077

RESUMO

Action potential (AP) conduction depends on voltage-gated sodium channels, of which there are nine subtypes. The vagus nerve, comprising sensory afferent fibers and efferent parasympathetic fibers, provides autonomic regulation of visceral organs, but the voltage-gated sodium channels (NaV1) subtypes involved in its AP conduction are poorly defined. We studied the A- and C-waves of electrically stimulated compound action potentials (CAPs) of the mouse and rat vagus nerves with and without NaV1 inhibitor administration: tetrodotoxin (TTX), PF-05089771 (mouse NaV1.7), ProTX-II (NaV1.7), ICA-121341 (NaV1.1, NaV1.3, and NaV1.6), LSN-3049227 (NaV1.2, NaV1.6, and NaV1.7), and A-803467 (NaV1.8). We show that TTX-sensitive NaV1 channels are essential for all vagal AP conduction. PF-05089771 but not ICA-121341 inhibited the mouse A-wave, which was abolished by LSN-3049227, suggesting roles for NaV1.7 and NaV1.2. The mouse C-wave was abolished by LSN-3049227 and a combination of PF-05089771 and ICA-121341, suggesting roles for NaV1.7 and NaV1.6. The rat A-wave was inhibited by ProTX-II, ICA-121341, and a combination of these inhibitors but only abolished by LSN-3049227, suggesting roles for NaV1.7, NaV1.6, and NaV1.2. The rat C-wave was abolished by LSN-3049227 and a combination of ProTX-II and ICA-121341, suggesting roles for NaV1.7 and NaV1.6. A-803467 also inhibited the mouse and rat CAP suggesting a cooperative role for the TTX-resistant NaV1.8. Overall, our data demonstrate that multiple NaV1 subtypes contribute to vagal CAPs, with NaV1.7 and NaV1.8 playing predominant roles and NaV1.6 and NaV1.2 contributing to a different extent based on nerve fiber type and species. Inhibition of these NaV1 may impact autonomic regulation of visceral organs.NEW & NOTEWORTHY Distinct NaV1 channels are involved in action potential (AP) initiation and conduction from afferent terminals within specific organs. Here, we have identified the NaV1 necessary for AP conduction in the entire murine and rat vagus nerve. We show TTX-sensitive channels are essential for all AP conduction, predominantly NaV1.7 with NaV1.2 and NaV1.6 playing lesser roles depending on the species and fiber type. In addition, we show that NaV1.8 is also essential for most axonal AP conduction.


Assuntos
Canais de Sódio Disparados por Voltagem , Camundongos , Ratos , Animais , Potenciais de Ação/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Tetrodotoxina/farmacologia , Nervo Vago/fisiologia
10.
Pflugers Arch ; 475(11): 1315-1327, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589734

RESUMO

In isolated segments of the rat proximal colon, the dopamine reuptake inhibitor GBR 12909 (GBR) causes a dilatation, while the D1-like receptor antagonist SCH 23390 (SCH) induces a tonic constriction, suggesting that neurally released dopamine tonically stimulates enteric inhibitory efferent neurons. Here, the targets of the enteric dopaminergic neurons were investigated. Cannulated segments of rat proximal colon were bathed in physiological salt solution and luminally perfused with 0.9% saline, while all drugs were applied to the bath. Spatio-temporal maps of colonic motility were constructed from video recordings of peristaltic contractions, and the maximum diameter was measured as an index of colonic contractility. GBR (1 µM)-induced dilatations of colonic segments were prevented by SCH (5 µM), L-nitro arginine (L-NA; 100 µM), a nitric oxide synthase inhibitor, or tetrodotoxin (0.6 µM). In contrast, constrictions induced by a higher concentration of SCH (20 µM) were unaffected by either L-NA or tetrodotoxin. The vasoactive intestinal peptide (VIP) receptor antagonist VIP10-28 (3 µM) or P2Y1 receptor antagonist MRS 2500 (1 µM) had no effect on either the GBR-induced dilatation or the SCH-induced constriction. In colonic segments that had been pretreated with 6-hydroxydopamine (100 µM, 3 h) to deplete enteric dopamine, GBR failed to increase the colonic diameter, while SCH was still capable of constricting colonic segments. Enteric dopaminergic neurons appear to project to nitrergic neurons to dilate the proximal colon by activating neuronal D1-like receptors. In addition, constitutively activated D1-like receptors expressed in cells yet to be determined may provide a tonic inhibition on colonic constrictions.


Assuntos
Dopamina , Neurônios , Ratos , Animais , Dopamina/farmacologia , Tetrodotoxina/farmacologia , Peristaltismo/fisiologia , Arginina/farmacologia , Colo , Motilidade Gastrointestinal
11.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R344-R358, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458380

RESUMO

Very little is known about the physiological role of nicotinic receptors in canine bladders, although functional nicotinic receptors have been reported in bladders of many species. Utilizing in vitro methods, we evaluated nicotinic receptors mediating bladder function in dogs: control (9 female and 11 male normal controls, 5 sham operated), Decentralized (9 females, decentralized 6-21 mo), and obturator-to-pelvic nerve transfer reinnervated (ObNT-Reinn; 9 females; decentralized 9-13 mo, then reinnervated with 8-12 mo recovery). Muscle strips were collected, mucosa-denuded, and mounted in muscle baths before incubation with neurotransmitter antagonists, and contractions to the nicotinic receptor agonist epibatidine were determined. Strip response to epibatidine, expressed as percent potassium chloride, was similar (∼35% in controls, 30% in Decentralized, and 24% in ObNT-Reinn). Differentially, epibatidine responses in Decentralized and ObNT-Reinn bladder strips were lower than controls after tetrodotoxin (TTX, a sodium channel blocker that inhibits axonal action potentials). Yet, in all groups, epibatidine-induced strip contractions were similarly inhibited by mecamylamine and hexamethonium (ganglionic nicotinic receptor antagonists), SR 16584 (α3ß4 neuronal nicotinic receptor antagonist), atracurium and tubocurarine (neuromuscular nicotinic receptor antagonists), and atropine (muscarinic receptor antagonist), indicating that nicotinic receptors (particularly α3ß4 subtypes), neuromuscular and muscarinic receptors play roles in bladder contractility. In control bladder strips, since tetrodotoxin did not inhibit epibatidine contractions, nicotinic receptors are likely located on nerve terminals. The tetrodotoxin inhibition of epibatidine-induced contractions in Decentralized and ObNT-Reinn suggests a relocation of nicotinic receptors from nerve terminals to more distant axonal sites, perhaps as a compensatory mechanism to recover bladder function.


Assuntos
Transferência de Nervo , Receptores Nicotínicos , Cães , Animais , Feminino , Masculino , Bexiga Urinária , Tetrodotoxina/farmacologia , Canal Anal , Neurônios Motores
12.
Sci Rep ; 13(1): 8887, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264112

RESUMO

Voltage gated sodium channels (VGSCs) are required for action potential initiation and propagation in mammalian neurons. As with other ion channel families, VGSC density varies between neurons. Importantly, sodium current (INa) density variability is reduced in pyramidal neurons of Scn1b null mice. Scn1b encodes the VGSC ß1/ ß1B subunits, which regulate channel expression, trafficking, and voltage dependent properties. Here, we investigate how variable INa density in cortical layer 6 and subicular pyramidal neurons affects spike patterning and network synchronization. Constitutive or inducible Scn1b deletion enhances spike timing correlations between pyramidal neurons in response to fluctuating stimuli and impairs spike-triggered average current pattern diversity while preserving spike reliability. Inhibiting INa with a low concentration of tetrodotoxin similarly alters patterning without impairing reliability, with modest effects on firing rate. Computational modeling shows that broad INa density ranges confer a similarly broad spectrum of spike patterning in response to fluctuating synaptic conductances. Network coupling of neurons with high INa density variability displaces the coupling requirements for synchronization and broadens the dynamic range of activity when varying synaptic strength and network topology. Our results show that INa heterogeneity between neurons potently regulates spike pattern diversity and network synchronization, expanding VGSC roles in the nervous system.


Assuntos
Neurônios , Sódio , Camundongos , Animais , Sódio/metabolismo , Reprodutibilidade dos Testes , Tetrodotoxina/farmacologia , Neurônios/metabolismo , Potenciais de Ação , Camundongos Knockout , Mamíferos/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo
13.
Toxins (Basel) ; 15(5)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235368

RESUMO

Tetrodotoxin (TTX) is a highly fatal marine biotoxin. Constantly increasing intoxications and the lack of specific antitoxic drugs in clinical applications highlight the need for further research into the toxic effects of TTX. Current reports on poisoning cases and the TTX toxicity mechanism suggest that the blocking of voltage-gated sodium channels (VGSCs) by TTX is probably reversible, but direct evidence of this is lacking, as far as we are aware. This study explored the acute toxic effects of TTX at sub-lethal doses via different routes, analyzing variations in muscle strength and TTX concentration in the blood in mice. We found that the loss of muscle strength in mice caused by TTX was dose-dependent and reversible, and the death time and muscle strength variations after oral gavage with TTX appeared to occur later and were more variable than those after intramuscular injection. In conclusion, we systematically compared the acute toxic effects of TTX for two different administration routes at sub-lethal doses, directly verifying the reversible reaction of TTX blocking VGSCs and speculating that averting a complete block of VGSCs by TTX could be an effective strategy for preventing death from TTX poisoning. This work may provide data for the diagnosis and treatment of TTX poisoning.


Assuntos
Canais de Sódio Disparados por Voltagem , Camundongos , Animais , Tetrodotoxina/farmacologia , Injeções Intramusculares , Relação Dose-Resposta a Droga
14.
Pestic Biochem Physiol ; 193: 105433, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248010

RESUMO

The main objective of this study was to evaluate the effects and possible mechanisms of action of glyphosate and a glyphosate-based herbicide (GBH) on dopaminergic neurotransmission in the rat striatum. Acute exposure to glyphosate or GBH, administered by systemic (75 or 150 mg/kg, i.p.) or intrastriatal (1, 5, or 10 mM for 1 h) routes, produced significant concentration-dependent increases in dopamine release measured in vivo by cerebral microdialysis coupled to HPLC with electrochemical detection. Systemic administration of glyphosate also significantly impaired motor control and decreased striatal acetylcholinesterase activity and antioxidant capacity. At least two mechanisms can be proposed to explain the glyphosate-induced increases in extracellular dopamine levels: increased exocytotic dopamine release from synaptic vesicles or inhibition of dopamine transporter (DAT). Thus, we investigated the effects of intrastriatal administration of glyphosate (5 mM) in animals pretreated with tetrodotoxin (TTX) or reserpine. It was observed that TTX (10 or 20 µM) had no significant effect on glyphosate-induced dopamine release, while reserpine (10 mg/kg i.p) partially but significantly reduced the dopamine release. When glyphosate was coinfused with nomifensine (50 µM), the increase in dopamine levels was significantly higher than that observed with glyphosate or nomifensine alone. So, two possible hypotheses could explain this additive effect: both glyphosate and nomifensine act through different mechanisms at the dopaminergic terminals to increase dopamine levels; or both nomifensine and glyphosate act on DAT, with glyphosate simultaneously inhibiting reuptake and stimulating dopamine release by reversing the DAT function. Future research is needed to determine the effects of this pesticide at environmentally relevant doses.


Assuntos
Dopamina , Herbicidas , Nomifensina , Transmissão Sináptica , Animais , Ratos , Acetilcolinesterase , Nomifensina/farmacologia , Ratos Sprague-Dawley , Reserpina/farmacologia , Tetrodotoxina/farmacologia , Herbicidas/toxicidade
15.
Phytomedicine ; 115: 154791, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094425

RESUMO

BACKGROUND: α-Mangostin is a xanthone isolated from the pericarps of mangosteen fruit with, and has analgesic properties. Although the effects suggest an interaction of α-mangostin with ion channels in the nociceptive neurons, electrophysiological investigation of the underlying mechanism has not been performed. HYPOTHESIS: We hypothesized that α-Mangostin exerts its analgesic effects by modulating the activity of various ion channels in dorsal root ganglion (DRG) neurons. METHODS: We performed a whole-cell patch clamp study using mouse DRG neurons, HEK293T cells overexpressing targeted ion channels, and ND7/23 cells. Molecular docking (MD) and in silico absorption, distribution, metabolism, and excretion (ADME) analyses were conducted to obtain further insights into the binding sites and pharmacokinetics, respectively. RESULTS: Application of α-mangostin (1-3 µM) hyperpolarized the resting membrane potential (RMP) of small-sized DRG neurons by increasing background K+ conductance and thereby inhibited action potential generation. At micromolar levels, α-mangostin activates TREK-1, TREK-2, or TRAAK, members of the two-pore domain K+ channel (K2P) family known to be involved in RMP formation in DRG neurons. Furthermore, capsaicin-induced TRPV1 currents were potently inhibited by α-mangostin (0.43 ± 0.27 µM), and partly suppressed tetrodotoxin-sensitive voltage-gated Na+ channel (NaV) currents. MD simulation revealed that multiple oxygen atoms in α-mangostin may form stable hydrogen bonds with TREKs, TRAAK, TRPV1, and NaV channels. In silico ADME tests suggested that α-mangostin may satisfy the drug-likeness properties without penetrating the blood-brain barrier. CONCLUSION: The analgesic properties of α-mangostin might be mediated by the multi-target modulation of ion channels, including TREK/TRAAK activation, TRPV1 inhibition, and reduction of the tetrodotoxin-sensitive NaV current. The findings suggest that the phytochemical can be a multi-ion channel-targeting drug and an alternative drug for effective pain management.


Assuntos
Gânglios Espinais , Neurônios , Camundongos , Humanos , Animais , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacologia , Células HEK293 , Simulação de Acoplamento Molecular
16.
Nat Commun ; 14(1): 2444, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117194

RESUMO

Delivery of hydrophilic small molecule therapeutics by traditional drug delivery systems is challenging. Herein, we have used the specific interaction between DNA aptamers and drugs to create simple and effective drug depot systems. The specific binding of a phosphorothioate-modified aptamer to drugs formed non-covalent aptamer/drug complexes, which created a sustained release system. We demonstrated the effectiveness of this system with small hydrophilic molecules, the site 1 sodium channel blockers tetrodotoxin and saxitoxin. The aptamer-based delivery system greatly prolonged the duration of local anesthesia and reduced systemic toxicity. The beneficial effects of the aptamers were restricted to the compounds they were specific to. These studies establish aptamers as a class of highly specific, modifiable drug delivery systems, and demonstrate potential usefulness in the management of postoperative pain.


Assuntos
Aptâmeros de Nucleotídeos , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada , Aptâmeros de Nucleotídeos/química , Tetrodotoxina/farmacologia , Bloqueadores dos Canais de Sódio
17.
BMC Anesthesiol ; 23(1): 145, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120567

RESUMO

BACKGROUND: Chloral hydrate is a sedative-hypnotic drug widely used for relieving fear and anxiety in pediatric patients. However, mechanisms underlying the chloral hydrate-mediated analgesic action remain unexplored. Therefore, we investigated the effect of 2',2',2'-trichloroethanol (TCE), the active metabolite of chloral hydrate, on tetrodotoxin-resistant (TTX-R) Na+ channels expressed in nociceptive sensory neurons. METHODS: The TTX-R Na+ current (INa) was recorded from acutely isolated rat trigeminal ganglion neurons using the whole-cell patch-clamp technique. RESULTS: Trichloroethanol decreased the peak amplitude of transient TTX-R INa in a concentration-dependent manner and potently inhibited persistent components of transient TTX-R INa and slow voltage-ramp-induced INa at clinically relevant concentrations. Trichloroethanol exerted multiple effects on various properties of TTX-R Na+ channels; it (1) induced a hyperpolarizing shift on the steady-state fast inactivation relationship, (2) increased use-dependent inhibition, (3) accelerated the onset of inactivation, and (4) retarded the recovery of inactivated TTX-R Na+ channels. Under current-clamp conditions, TCE increased the threshold for the generation of action potentials, as well as decreased the number of action potentials elicited by depolarizing current stimuli. CONCLUSIONS: Our findings suggest that chloral hydrate, through its active metabolite TCE, inhibits TTX-R INa and modulates various properties of these channels, resulting in the decreased excitability of nociceptive neurons. These pharmacological characteristics provide novel insights into the analgesic efficacy exerted by chloral hydrate.


Assuntos
Nociceptores , Canais de Sódio , Ratos , Animais , Tetrodotoxina/farmacologia , Tetrodotoxina/metabolismo , Nociceptores/metabolismo , Canais de Sódio/metabolismo , Canais de Sódio/farmacologia , Hidrato de Cloral/farmacologia , Hidrato de Cloral/metabolismo , Potenciais da Membrana/fisiologia , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo
18.
PLoS One ; 18(4): e0282732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053302

RESUMO

It was suggested that intestinal mucosal secretion is enhanced during muscle relaxation and contraction. Mechanisms of mechanically induced secretion have been studied in rodent species. We used voltage clamp Ussing technique to investigate, in human and porcine colonic tissue, secretion evoked by serosal (Pser) or mucosal (Pmuc) pressure application (2-60 mmHg) to induce distension into the mucosal or serosal compartment, respectively. In both species, Pser or Pmuc caused secretion due to Cl- and, in human colon, also HCO3- fluxes. In the human colon, responses were larger in proximal than distal regions. In porcine colon, Pmuc evoked larger responses than Pser whereas the opposite was the case in human colon. In both species, piroxicam revealed a strong prostaglandin (PG) dependent component. Pser and Pmuc induced secretion was tetrodotoxin (TTX) sensitive in porcine colon. In human colon, a TTX sensitive component was only revealed after piroxicam. However, synaptic blockade by ω-conotoxin GVIA reduced the response to mechanical stimuli. Secretion was induced by tensile rather than compressive forces as preventing distension by a filter inhibited the secretion. In conclusion, in both species, distension induced secretion was predominantly mediated by PGs and a rather small nerve dependent response involving mechanosensitive somata and synapses.


Assuntos
Colo , Piroxicam , Humanos , Animais , Suínos , Piroxicam/farmacologia , Tetrodotoxina/farmacologia , Prostaglandinas , Mucosa Intestinal , Cloretos
19.
Mar Drugs ; 21(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976245

RESUMO

Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na+ (NaV) channels. In arteries, NaV channels are expressed in sympathetic nerve endings, both in the intima and media. In this present work, we aimed to decipher the role of NaV channels in vascular tone using TTX. We first characterized the expression of NaV channels in the aorta, a model of conduction arteries, and in mesenteric arteries (MA), a model of resistance arteries, in C57Bl/6J mice, by Western blot, immunochemistry, and absolute RT-qPCR. Our data showed that these channels are expressed in both endothelium and media of aorta and MA, in which scn2a and scn1b were the most abundant transcripts, suggesting that murine vascular NaV channels consist of NaV1.2 channel subtype with NaVß1 auxiliary subunit. Using myography, we showed that TTX (1 µM) induced complete vasorelaxation in MA in the presence of veratridine and cocktails of antagonists (prazosin and atropine with or without suramin) that suppressed the effects of neurotransmitter release. In addition, TTX (1 µM) strongly potentiated the flow-mediated dilation response of isolated MA. Altogether, our data showed that TTX blocks NaV channels in resistance arteries and consecutively decreases vascular tone. This could explain the drop in total peripheral resistance observed during mammal tetrodotoxications.


Assuntos
Aorta , Artérias Mesentéricas , Camundongos , Animais , Tetrodotoxina/farmacologia , Mamíferos , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem
20.
Life Sci ; 319: 121520, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828129

RESUMO

AIMS: In the present study, NAN-190 [1-(2-methoxyphenyl)-4-[4-(2-phthalimido) butyl] piperazine] was identified as a Nav1.7 blocker. In the meantime, the compound could alleviate the Complete Freund's Adjuvant (CFA)-induced inflammatory pain. To understand the molecular mechanisms of NAN-190 on pain, the effect of NAN-190 on Nav1.7 sodium channels was studied. MAIN METHODS: Inflammatory pain was induced by injection of CFA solution into the plantar side of the left hindpaw. Thermal hyperalgesia and mechanical allodynia were measured. Whole-cell patch clamp methods were used to record sodium channels and other pain-related targets in the cultured recombinant cells and dorsal root ganglion neurons. KEY FINDINGS: Nan-190 was identified as an inhibitor of Nav1.7 sodium channels and animal experiments showed that NAN-190 significantly alleviated CFA-induced inflammatory pain. Mechanism studies demonstrated that NAN-190 was a state-dependent Nav1.7 blocker with IC50 value on the inactivated state ten-fold more potent than that on the rest state. NAN-190 leftward-shifted the fast and slow inactivation curves about 9.07 mV and 38.56 mV, respectively, but had no effects on channel activation. The compound also slowed the recovery from fast and slow inactivation and showed use-dependent properties. Further, the site-directed mutagenesis experiments demonstrated that NAN-190 mainly worked on the open state of Nav1.7 channels by interacting with sites similar as local anesthetics. In DRG neurons, NAN-190 mainly blocks TTX-sensitive currents but is less sensitive to TTX-R sodium currents. SIGNIFICANCE: Taken together, our results indicated that NAN-190 alleviated pain behaviors by blocking sodium channels by interacting with the open state.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8 , Serotonina , Animais , Serotonina/farmacologia , Canais de Sódio , Dor/tratamento farmacológico , Piperazinas/farmacologia , Gânglios Espinais , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...